
SSAS - Designing,

Development and Deployment

Best practices

Amit Bansal

www.PeoplewareIndia.com

www.SQLServerGeeks.com

About Amit Bansal

• CTO, eDominer Systems & Peopleware India

• Corporate Trainer/Consultant & Evangelist

• Conducted more than 400 workshops on SQL Server &

BI for top notch IT companies world wide

• Microsoft MVP for SQL Server

• Microsoft Certified Trainer Advisory Council member

• Speaker at TechED India, TechED US & TechED Europe

• Technical Reviewer – MSL courses on SQL Server

• SME – SQL Server 2008 certifications

• President – SQLServerGeeks.com

Agenda

• Problem Statement

• Dimension Design

• Cube Design

• Partitioning

• Aggregations

• Summary

Problem Statement

• You want:

– Faster initial development

– Easier further development

– Easier maintenance

– Agility and scalability in your design

– Performance, Performance, Performance

• You need to design best, right from start ! (Do

you I really need to tell you this )

Agenda

• Problem Statement

• Dimension Design

• Cube Design

• Partitioning

• Aggregations

• Summary

Natural Hierarchies

• A hierarchy is a natural hierarchy

when each attribute included in

the user-defined hierarchy has a

one to many relationship with the

attribute immediately below it

(every child member has only

one parent)

• Server simply ―works better‖

City

State

Country

Month

Quarter

Year

Date

Natural Hierarchies

• Performance implications

– Only natural hierarchies are materialized on disk

during processing

– Unnatural hierarchies are built on the fly during

queries (and cached in memory)

– Server internally decomposes unnatural hierarchies

into natural components

– Essentially operates like ad hoc navigation path (but

somewhat better)

– Aggregation designer favors user defined hierarchies

Attribute Relationships

Customer

City

State

Country

Gender Marital Age

Illustration

Attribute Relationships

• Flexible relationships can change

• Rigid relationships do not change

City

State

Phone Number

Customer

Customer

City

Month

Quarter

Attribute Relationships

• Where are they used?

– Storage

• Query performance

– Greatly improved effectiveness of in-memory caching

– Materialized hierarchies when present

• Processing performance: Fewer, smaller hash tables result

in faster, less memory intensive processing

• Aggregation design: Algorithm needs relationships in order

to design effective aggregations

• Member properties: Attribute relationships identify member

properties on levels

Attribute Relationships

• Where are they used?

– Semantics

• MDX overwrite semantics: City.Seattle State. WA |

State.OR City.All

• Non-key granularity (Aggregation Paths)

• Dimension security: DeniedSet = {State.WA}

DEMO

Attribute relationships & Natural

hierarchies

Dealing with Large Dimensions

• Optimizing Processing

– Use natural hierarchies

• Good attribute/hierarchy relationships forces the AS engine

to build smaller DISTINCT queries versus one large and

expensive query

• Consider size of other properties/attributes

– Dimension SQL queries are in the form of

 select distinct Key1, Key2, Name, …,
 RelKey1, RelKey2, …
 from [DimensionTable]

Dealing with Large Dimensions

• Important to tune your SQL statements

– Indexes to underlying tables

– Create a separate table for dimensions

– Avoid OPENROWSET queries

– Use Views to create your own version of ―query

binding‖

• Size limitations for string stores and effect on

dimension size

– 4 GB, stored in Unicode, 6 byte per-string overhead.

– E.g. 50-character name: 4*1024*1024*1024 /

(6+50*2) = 40.5 million members

Dimension Processing

• ByAttribute vs ByTable

– This is a ProcessingGroup property

• Default = ByAttribute

– Advantages of ByTable

• Entire set of dimension data loaded into memory

• Theoretically processes data faster

• But BEWARE

– Bypasses normal checks

– Assumes there is enough memory to process all

attributes concurrently

– If this is not true…

Dimension Processing

• ByAttribute vs ByTable

– 2 dimensions
• Each >25M members with 8-10 attributes

– ByTable
• Took 80% of available memory

• 25.6 / 32 GB

• Never completed

– ByAttribute
• Only 28% of available memory

• 9 / 32 GB

• Process completed

Agenda

• Problem Statement

• Dimension Design

• Cube Design

• Partitioning

• Aggregations

• Summary

Cube Dimensions

• Dimensions

– Consolidate multiple hierarchies into single dimension

(unless they are related via fact table)

– Use role-playing dimensions (e.g., OrderDate,

BillDate, ShipDate)—avoids multiple physical copies

– Use parent-child dimensions prudently

• No aggregation support

– Set Materialized = true on reference dimensions

Cube Dimensions

• Dimensions

– Use many-to-many dimensions prudently

• Slower than regular dimensions, but faster than calculations

• Intermediate measure group must be ―small‖ relative to

primary measure group

• Consider creating aggregations on the shared common

attributes of the intermediate measure group

Measure Groups

• Common questions

– At what point do you split from a single cube and create one or

more additional cubes?

– How many is too many?

• Why is this important?

– New measure groups adding new dimensions result in an

expansion of the cube space

– Larger calculation space = more work for the engine when

evaluating calculations

Measure Groups

• Guidance

– Look at increase in dimensionality. If significant, and overlap with

other measure groups is minimal, consider a separate cube

– Will users want to analyze measures together?

– Will calculations need to reference unified measures collection?

DEMO

Cube Design Best Practices

Agenda

• Problem Statement

• Dimension Design

• Cube Design

• Partitioning

• Aggregations

• Summary

Why Partition?

• Breaks large cubes into manageable chunks

• For measure groups, not dimensions

• Fact rows are distributed

by a partitioning scheme

– Managed by DBA

– By Time: Sales for 2001, 2002, 2003, …

– By Geography: Sales for North America, Europe,

Asia, …

• Why?

– For Manageability, Performance, Scalability

Benefits of Partitioning

• Partitions can be added, processed,

deleted independently

– Update to last month’s data does not affect prior

months’ partitions

– Sliding window scenario easy to implement

– e.g., 24 month window  add June 2006 partition

and delete June 2004

• Partitions can have different storage settings

– Storage mode (MOLAP, ROLAP, HOLAP)

– Aggregation design

– Alternate disk drive

– Remote server

Benefits of Partitioning

• Partitions can be processed

and queried in parallel

– Better utilization of server resources

– Reduced data warehouse load times

• Queries are isolated to relevant

partitions  less data to scan

– SELECT … FROM… WHERE [Time].[Year].[2006]

– Queries only 2006 partitions

• Bottom line  partitions enable

– Manageability, Performance & Scalability

Best Practices for Partitions

• General guidance: 20M rows per partition

– Use judgment, e.g., perhaps better to have 500 partitions with 40

million rows than 1000 20 million row partitions

– Standard tools unable to manage thousands of partitions

• More partitions means more files

– E.g. one 10GB cube with ~250,000 files (design issues)

– Deletion of database took ~25min to complete

• Partition by time plus another dimension e.g. Geography

– Limits amount of reprocessing

– Use query patterns to pick another partitioning attribute

• When data changes

– All data cache for the measure group is discarded

– Separate cube or measure groups by ―static‖ and ―real-time‖

analysis

Best Practices for Partitions

January 2008
11

20

21

30

31

40

41

50

11

15

16

20

21

25 26

50

Equal Sized Partitions Not Equal Sized Partitions

DEMO

Partitioning

Agenda

• Problem Statement

• Dimension Design

• Cube Design

• Partitioning

• Aggregations

• Summary

Aggregations for query

performance

•A subtotal of partition data

–based on a set of attributes from each dimension

Customers
All Customers
Country
State
City
Name

Products
All Products
Category
Brand
Item
SKU Facts

custID SKU Units Sold Sales

345-23 135123 2 $45.67

563-01 451236 34 $67.32

…

Highest-Level Aggregation

Customer Product Units Sold Sales

All All 347814123 $345,212,301.30

Intermediate Aggregation

countryCode productID Units Sold Sales

Can sd452 9456 $23,914.30

US yu678 4623 $57,931.45

…

How many Aggregations

 125 possible combinations (just for user-defined dimensions)

 5 customer levels, 5 product levels, 5 time levels

 Imagine a cube with ten dimensions, five levels each

 9,765,625 combinations! Then you add attribute hierarchies to the mix

 General rule: multiply the number of attributes in each dimension

 Goal should be to find the best subset of this potentially huge
number of possibilities

Tradeoff between query performance and processing/storage

overhead

Customer
All Customers

Country

State

City

Name

Product
All Products

Category

Brand

Item

SKU

Time
All Time

Year

Quarter

Month

Day

Aggregations for query

performance

Customers

All Customers (1)
Country (3)
State (80)
City (578)
Name (3811)

Product

All Products (1)
Category (60)
Brand (911)
Item (7621)
SKU (8211)

Time

All Time (1)
Year (3)
Quarter (12)
Month (36)
Day (1095)

Aggregations at lower levels have more possible rows…

(All, All, All) 1 x 1 x 1 = 1

(Country, Item, Quarter) 3 x 7621 x 12 = 274,356

(Name, SKU, Day) 3811 x 8211 x 1095 = 34,264,872,495

Actual number of rows depends on the data sparsity

Size also depends on the number of measures

Aggregations for query

performance

Query levels Aggregation used Max Cells

(All, All, All) (All, All, All) 1

(Country, Item, Quarter) (Country, Item, Quarter) 274,356

(Country, Brand, Quarter) (Country, Item, Quarter) 274,356

(Country, Category, All) (Country, Item, Quarter) 274,356

(State, Item, Quarter) (Name, SKU, Day) 34,264,872,495

(City, Category, Year) (Name, SKU, Day) 34,264,872,495

Using a higher-level aggregation means fewer cells

to consider

Customers

All Customers
Country
State
City
Name

Products

All Products
Category
Brand
Item
SKU

Time

All Time
Year
Quarter
Month
Day

Best Practices for Aggregations

• Define all possible attribute relationships

• Set accurate attribute member counts

and fact table counts

• Set AggregationUsage

– Set rarely queried attributes to None

– Commonly queried attributes to Unrestricted

Best Practices for Aggregations

• Not too many

– In the 100s, not 1000s!

• Do not build aggregations

> 30% of fact table size

Best Practices for Aggregations

1. Use Storage Design Wizard for the initial

aggregations (~20% perf gain)

2. Enable query log

3. Run pilot workload with limited users

4. Refine with Usage Based Optimization Wizard

5. Use a larger perf gain (70+%)

6. Reprocess partitions for new aggregations

to take effect

7. Periodically use UBO to refine aggregations

DEMO

Aggregations

Agenda

• Problem Statement

• Dimension Design

• Cube Design

• Partitioning

• Aggregations

• Summary

Summary

• Design for performance and scalability from the start

• Some fundamental principles carry through from SQL 7.0

– Dimension design

– Partitioning

– Aggregations

• Critical to properly implement/utilize modeling capabilities introduced

in SSAS 2005 and carried forward in 2008

– Attribute relationships, natural hierarchies

– Design alternatives: role-playing, many-to-many,

reference dimensions, semi-additive measures

– Flexible processing options

• SSAS 2008 development tools have been redesigned

and enhanced to better assist in development of

high performance cubes

Resources

• Analysis Services 2005 Processing Architecture

 http://msdn.microsoft.com/en-US/library/ms345142(v=SQL.90).aspx

• Many-to-Many Dimensions in Analysis Services

 http://msdn.microsoft.com/en-US/library/ms345139(v=SQL.90).aspx

• Analysis Services Query Performance Top 10 Best Practices

 http://msdn.microsoft.com/en-US/library/cc966527.aspx

• SQL Server 2008 Analysis Services Performance Guide

 http://msdn.microsoft.com/en-us/library/dd542635(v=SQL.100).aspx

Resources

Software Application Developers

http://msdn.microsoft.com/

Infrastructure Professionals

http://technet.microsoft.com/

 msdnindia technetindia @msdnindia @technetindia

http://msdn.microsoft.com/
http://technet.microsoft.com/
http://facebook.com/msdnindia
http://facebook.com/msdnindia
http://facebook.com/msdnindia
http://facebook.com/msdnindia
http://facebook.com/msdnindia
http://facebook.com/msdnindia
http://facebook.com/msdnindia

© 2011 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in

the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft

must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any

information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

